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Introduction
In their Point, Thomas and Witte (1) forcefully lay out their
case for seriously considering the impact of population strati-
fication in so-called “association” studies of genetic factors and
cancer. In our Counterpoint, we discuss the nature of population
stratification; the conditions that are necessary for it to occur
and when they are likely in studies of cancer; the evidence
about whether important bias or excess false-positive findings
are consequences of population stratification; how we might
determine empirically the seriousness of the consequences; and
possible solutions to the problem, if it exists, including repli-
cation, use of genomic control, and use of related controls. We
conclude with a statement of our view of the current situation
and where it differs from that of Thomas and Witte (1). Spe-
cifically, we affirm our view, enunciated in work published
previously (2), that population stratification is not a serious
threat to the reliability of cohort and case-control studies of
cancer, at least in studies of non-Hispanics of European de-
scent, with unrelated controls; the main reason for the restric-
tion to studies of Europeans is the lack of solid empirical data
in other groups.

Population Stratification: What Is It and When Will It
Cause Important Bias?
Population stratification refers to a particular form of con-
founding. In cohort and case-control studies of genetic vari-
ants, the bias from population stratification is the distortion
in the value of an observed association between the genetic
variant G and disease D that can occur when G is associated
with some true risk factor E that varies by ethnicity (Fig. 1).
In population stratification, risks of disease in related indi-
viduals, particularly those in the same ethnic group, are more
similar than risks of disease in more distantly related or
completely unrelated individuals. The homogeneity may be
attributable to similar lifestyle or to greater similarity in the
presence of one or more risk-conferring alleles. Ethnicity per
se does not explain the risk; it is only a marker for individ-

uals at similar risk. Similarly, a gradient in risk of disease by
socioeconomic status does not itself cause disease but may
be a reflection of similarity in lifestyle or access to preven-
tive health care. Whether the consideration is ethnicity or
socioeconomic status, controlling for the factors that explain
the similarity in risk eliminates any bias.

What is the impact of population stratification? We ac-
knowledge, without reservation, that population stratification
exists and causes bias. We note, however, that the term “bias,”
refers both to the existence of some distortion of the measure of
effect and to the amount of distortion. In an epidemiological
study, it is not the existence of bias that is intrinsically trouble-
some but its potential magnitude (3); otherwise, we would not
do studies with, for example, incomplete case ascertainment,
moderate response rates in controls, or exposures measured
with error. Our criterion for evaluating the consequences of
population stratification is quantitative: it is the potential to
have enough bias in a study so that its conclusions and inter-
pretation change materially.

Several conditions must be met before there will be sub-
stantial bias in a cohort or case-control study designed to
quantify the effects of common polymorphisms on the risk of
cancer at a given site (2):

(a) There must be substantial variation across ethnicities in
the frequency of the variant genotype being considered.

(b) There must be substantial variation across ethnicities in
disease rates after adjustment for risk factors, other than the
genotype of interest, that were collected in the study; typically,
but certainly not always, adjustment will reduce the interethnic
differences in cancer rates.

(c) The allele frequencies must track with the adjusted
cancer rates across ethnicities, for reasons other than the
effects of the allele of interest (2). For example, an allele
with a clade or gradient of increasing frequency from North
to South in Europe might track with a factor that affects
cancer risk, such as consumption of beer and butter rather
than wine and olive oil (2); this could induce bias from
population stratification when studying the effect of the
allele.

(d) Collection of ethnic information from study par-
ticipants must not be able to reduce bias to an acceptable
level.

Population stratification does not occur in an ethnically
homogeneous population. Nonetheless, we showed that the
potential for bias is greatest with two or three ethnicities and
tends to diminish as the number of ethnicities increases; the bias
tends to be less severe in a more diverse study population (2).
Even if there is substantial bias in a single study, it is highly
unlikely that bias in the same direction will occur in a second
study in a population with a different ethnic mix (2).
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Under What Scenarios Is Important Bias from
Population Stratification Likely?
Calculations. Theoretical results in Table 1, calculated exactly
like those accepted by Thomas and Witte (1), show that a bias
factor for the rate ratio, and by implication, the odds ratio and
the risk ratio, �15% attributable to population stratification is
unlikely when multiple ethnic groups are considered, unless the
range of cancer rates in the ethnic groups is at least 2-fold and
the frequency of the at-risk genotype varies substantially. These
bias factors, which do not depend on the strength of the rela-
tionship between the allele being studied and disease, should be
considered acceptable for epidemiological studies, especially
when considered against realistic alternative study designs. But
even the small levels of bias in our work are exaggerated:

(a) They are calculated under the assumption that there is
no useful information available on either the true risk factor
driving the differences in rates or on ethnicity itself and that
classical methods for the reduction of bias from confounding
are not used.

(b) The extreme values shown are obtained when allele
frequency and cancer rates for those without the at-risk geno-
type are strongly correlated.

(c) Furthermore, it seems safe to assume that the variation
in cancer rates in ethnic groups in the United States is less than
the variation in rates in their ancestors’ countries of origin for
two reasons: (i) cancer rates in descendants of immigrants
become closer to those of long-term residents of their new
homeland (4); and (ii) interethnic variation in allele frequencies
and cancer rates are dampened by intermarriage among these
groups.
Effect of Differences in Distribution of Risk Factors on
Magnitude of Ratios in Cancer Rates. To orient ourselves
in Table 1, we need to consider the magnitude of the difference in
rate of cancer in different groups induced by the difference
in the distribution of one or more risk factors in the groups.
Thomas and Witte (1) mention the “enormous risk attributable
to genes” in their conclusion. Their concern seems to be that if
a large fraction of cases are attributable to variation at a single
locus with high penetrance, an allele not causally related to risk

may be associated with disease because of population stratifi-
cation; the geographic variation in rates would then closely
follow the distribution of the at-risk allele or genotype, and a
study allele that is associated (whether because of founder
effects, linkage disequilibrium, or any other reason) with the
genotype conferring risk would appear associated with cancer.
In other words, this is an example of classical confounding.

However, it is the magnitude of the attributable risk, not
the relative risk or the penetrance, of a risk factor that directly
determines the variation in disease rates across groups, and
hence the confounding potential of the risk factor. Attributable
risk can be defined as AR � (IC � I0)/I0, where IC is the crude
incidence rate in the population (calculated without taking level
of exposure into account), and I0 is the rate in the unexposed;
after rearranging terms, one sees that IC/I0 � 1/(1 � AR). Thus,
in a population with an attributable risk from mutations in a
specific gene of 33%, the crude incidence rate is only 1.5-fold
higher than the risk in a population that is completely unex-
posed. The highest attributable risk from alleles for a relatively
common adult cancer that we know is due to the effects of
BRCA1 and BRCA2 founder mutations in Ashkenazi Jewish
women. Despite the very large relative risk of �20 and an
extremely high carrier frequency of 1.7% for high-penetrance
founder mutations (5), the overall rate of ovarian cancer in
Jewish women would be only 1.4 times the rate in an ethnic
group with no mutations; Table 1 shows that this is far too small
of an effect to cause much bias. In general, a highly penetrant
allele is not sufficient to cause major bias; the allele must be
frequent for the attributable risk to be high. But a very high
attributable risk from a gene is not to be expected often for
complex diseases such as adult cancer.

Moreover, when a disease is caused independently by
alleles in several different genes not close together on the same
chromosome, the possibility of important bias from population
stratification is greatly reduced, even if each of the individual
alleles confers high penetrance. No candidate allele could be
strongly associated with most of these true-risk alleles unless
the risk alleles were in linkage disequilibrium with one another;
instead, typically, there would be a mixture of positive and
negative correlations leading to considerably less bias than if
the variation in risk were attributable to differing frequency of
a single allele.
Importance of Environmental Factors. The descriptive epi-
demiology of adult cancer, particularly geographic and tempo-
ral variation and studies of migrants, and analytic studies lead
us to infer (6, 7) that international differences in cancer rates are
determined more by environmental, cultural, and behavioral
factors, perhaps modified by genes, than by genes acting alone.
If our view is correct, then the international and ethnic variation
in cancer rates are unlikely to be explained solely by alleles at
one or more loci in linkage disequilibrium with a candidate
allele simply because of founder effects. Furthermore, with the
possible exception of genes that may influence a behavioral
exposure, such as ALDH alleles and alcohol (8), tracking of
cancer rates and frequency of high-risk genotypes across eth-
nicities, a necessary condition for bias, is likely to be minimal;
even if tracking is present in one population, similar tracking is
highly unlikely to be found in a replication of the study in a
population consisting of different ethnicities.

Some might argue with our premise (9), although Thomas
and Witte (1) do not. The totality of the evidence from family
and twin studies appears to be consistent with various numbers
of causal genes with a wide range of attributable risk (10).
However, the well-documented environmental determinants

Fig. 1. Classical confounding and population stratification. In population
stratification, the frequency of an unmeasured risk factor for disease differs by
ethnicity. Broken lines with arrow indicate an association that is potentially
confounded by the true risk factor. Solid unidirectional arrows indicate the
direction of causal relationship. Solid bidirectional arrows indicate a corre-
lation that may or may not be causal. Reprinted from Journal of the National
Cancer Institute (1).
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and the rarity of striking familial aggregation of many cancers
argue against a single common, high-penetrant allele being
responsible for a large fraction of cancer, except for the rarest
forms such as retinoblastoma.
Variability in Allele Frequency Is Not Sufficient to Cause
Population Stratification. Sometimes another of the condi-
tions for important bias from population stratification, substan-

tial variation in frequency of the study allele across ethnicities,
is met; for example, as Thomas and Witte (1) note, HLA alleles
have considerable interethnic variation in frequency. We agree
that special attention should be paid in this situation but also
point out that the absence of one or more of the other conditions
eliminates or dramatically reduces the bias. For example, Risch
(11) has observed that “associations between specific HLA

Table 1 Bias factors calculated under different hypothetical variation in cancer incidence rates and high-risk genotype frequencya

Risk
ratiob

Frequency of
at-risk

genotypec

Bias factor
among all 28

subsets of size
2 among the
eight groups

Bias factor among all 40,320 orderings of the eight groups

Max Min Max Min Max Min
2.5

%ile
5

%ile
10

%ile
25

%ile
50

%ile
75

%ile
90

%ile
95

%ile
97.5
%ile

Max
bias

Mean
bias

1.0 0.1 0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 0.2 0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 0.3 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.1 0.1 0.3 0.97 1.03 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.00
1.1 0.2 0.5 0.97 1.03 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.00
1.1 0.3 0.9 0.94 1.06 0.97 0.98 0.98 0.99 0.99 1.00 1.01 1.01 1.02 1.02 1.03 1.00
1.2 0.1 0.3 0.94 1.06 0.98 0.98 0.98 0.99 0.99 1.00 1.01 1.01 1.02 1.02 1.02 1.00
1.2 0.2 0.5 0.94 1.06 0.97 0.98 0.98 0.99 0.99 1.00 1.01 1.01 1.02 1.02 1.03 1.00
1.2 0.3 0.9 0.89 1.12 0.95 0.97 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.00
1.3 0.1 0.3 0.92 1.08 0.97 0.98 0.98 0.98 0.99 1.00 1.01 1.02 1.02 1.03 1.04 1.00
1.3 0.2 0.5 0.92 1.09 0.96 0.97 0.98 0.98 0.99 1.00 1.01 1.02 1.02 1.03 1.04 1.00
1.3 0.3 0.9 0.85 1.18 0.93 0.95 0.96 0.97 0.98 1.00 1.02 1.04 1.04 1.05 1.07 1.00
1.4 0.1 0.3 0.90 1.11 0.96 0.97 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.03 1.05 1.00
1.4 0.2 0.5 0.89 1.11 0.95 0.97 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.03 1.05 1.00
1.4 0.3 0.9 0.81 1.24 0.92 0.94 0.95 0.96 0.97 1.00 1.03 1.05 1.06 1.07 1.09 1.00
1.5 0.1 0.3 0.88 1.13 0.95 0.96 0.97 0.97 0.98 1.00 1.02 1.03 1.03 1.04 1.05 1.00
1.5 0.2 0.5 0.87 1.14 0.94 0.96 0.97 0.97 0.98 1.00 1.02 1.03 1.04 1.04 1.06 1.00
1.5 0.3 0.9 0.78 1.29 0.90 0.93 0.94 0.95 0.97 1.00 1.03 1.06 1.07 1.08 1.11 1.00
1.6 0.1 0.3 0.86 1.15 0.94 0.96 0.96 0.97 0.98 1.00 1.02 1.03 1.04 1.04 1.06 1.00
1.6 0.2 0.5 0.86 1.16 0.94 0.95 0.96 0.97 0.98 1.00 1.02 1.03 1.04 1.05 1.07 1.00
1.6 0.3 0.9 0.75 1.35 0.88 0.92 0.93 0.94 0.97 1.00 1.04 1.06 1.08 1.09 1.13 1.00
1.7 0.1 0.3 0.84 1.17 0.93 0.95 0.96 0.97 0.98 1.00 1.02 1.03 1.04 1.05 1.07 1.00
1.7 0.2 0.5 0.84 1.18 0.93 0.95 0.96 0.96 0.98 1.00 1.02 1.04 1.05 1.05 1.08 1.00
1.7 0.3 0.9 0.73 1.40 0.87 0.91 0.92 0.93 0.96 1.00 1.04 1.07 1.09 1.11 1.15 1.00
1.8 0.1 0.3 0.83 1.19 0.92 0.95 0.95 0.96 0.98 1.00 1.02 1.04 1.05 1.06 1.08 1.00
1.8 0.2 0.5 0.82 1.20 0.92 0.94 0.95 0.96 0.98 1.00 1.02 1.04 1.05 1.06 1.08 1.00
1.8 0.3 0.9 0.71 1.45 0.86 0.90 0.91 0.93 0.96 1.00 1.04 1.08 1.10 1.12 1.17 1.00
1.9 0.1 0.3 0.81 1.20 0.92 0.94 0.95 0.96 0.98 1.00 1.02 1.04 1.05 1.06 1.08 1.00
1.9 0.2 0.5 0.81 1.22 0.91 0.94 0.95 0.96 0.98 1.00 1.03 1.04 1.06 1.06 1.09 1.00
1.9 0.3 0.9 0.69 1.51 0.85 0.89 0.90 0.92 0.95 1.00 1.05 1.09 1.11 1.13 1.18 1.00
2.0 0.1 0.3 0.80 1.22 0.91 0.94 0.95 0.96 0.97 1.00 1.03 1.05 1.06 1.06 1.09 1.00
2.0 0.2 0.5 0.80 1.24 0.91 0.93 0.94 0.95 0.97 1.00 1.03 1.05 1.06 1.07 1.10 1.00
2.0 0.3 0.9 0.67 1.56 0.84 0.88 0.90 0.92 0.95 1.00 1.05 1.09 1.12 1.14 1.20 1.00
2.1 0.1 0.3 0.79 1.23 0.91 0.93 0.94 0.95 0.97 1.00 1.03 1.05 1.06 1.07 1.10 1.00
2.1 0.2 0.5 0.78 1.25 0.90 0.93 0.94 0.95 0.97 1.00 1.03 1.05 1.06 1.07 1.10 1.00
2.1 0.3 0.9 0.65 1.60 0.83 0.87 0.89 0.91 0.95 1.00 1.06 1.10 1.13 1.15 1.21 1.00
2.2 0.1 0.3 0.78 1.25 0.90 0.93 0.94 0.95 0.97 1.00 1.03 1.05 1.06 1.07 1.10 1.00
2.2 0.2 0.5 0.77 1.27 0.90 0.93 0.94 0.95 0.97 1.00 1.03 1.05 1.07 1.08 1.11 1.00
2.2 0.3 0.9 0.63 1.65 0.82 0.87 0.88 0.91 0.94 1.00 1.06 1.11 1.13 1.16 1.23 1.00
2.3 0.1 0.3 0.77 1.26 0.90 0.93 0.94 0.95 0.97 1.00 1.03 1.05 1.07 1.08 1.11 1.00
2.3 0.2 0.5 0.76 1.29 0.89 0.92 0.93 0.95 0.97 1.00 1.03 1.06 1.07 1.08 1.12 1.00
2.3 0.3 0.9 0.62 1.70 0.81 0.86 0.88 0.90 0.94 1.00 1.06 1.11 1.14 1.17 1.24 1.00
2.4 0.1 0.3 0.76 1.27 0.89 0.92 0.93 0.95 0.97 1.00 1.03 1.06 1.07 1.08 1.11 1.00
2.4 0.2 0.5 0.75 1.30 0.89 0.92 0.93 0.94 0.97 1.00 1.03 1.06 1.07 1.09 1.12 1.00
2.4 0.3 0.9 0.61 1.74 0.81 0.86 0.87 0.90 0.94 1.00 1.07 1.12 1.15 1.17 1.25 1.00
2.5 0.1 0.3 0.75 1.28 0.89 0.92 0.93 0.94 0.97 1.00 1.03 1.06 1.07 1.08 1.12 1.00
2.5 0.2 0.5 0.74 1.31 0.88 0.92 0.93 0.94 0.97 1.00 1.04 1.06 1.08 1.09 1.13 1.00
2.5 0.3 0.9 0.59 1.79 0.80 0.85 0.87 0.89 0.94 1.00 1.07 1.12 1.16 1.18 1.27 1.00

a The table entries are confounding risk ratios, calculated according to the formula provided by Wacholder et al. (2). They show the bias factor when there are two or eight
equally common ethnic groups in the population, and no attempt has been made to adjust for ethnicity or other risk factors.
b Ratio of the highest to the lowest risk of disease in the eight ethnic groups. The eight rates are spaced equidistantly on a linear scale.
c Minimum and maximum frequency of at-risk genotype in the eight ethnic groups. The eight frequencies are spaced equidistantly on a linear scale.

515Cancer Epidemiology, Biomarkers & Prevention



antigens and a variety of diseases (mostly autoimmune) have
been reported and recently confirmed—for example with insu-
lin-dependent diabetes mellitus, multiple sclerosis, rheumatoid
arthritis, psoriasis, celiac disease, narcolepsy, hemochromato-
sis, and many others.” Many of the confirmed associations
between HLA antigens and these conditions are based on stud-
ies with unrelated controls. Furthermore, basic analytic princi-
ples can minimize bias (12).

Some other concerns raised by Thomas and Witte (1) are
alleviated by considering our theoretical results more closely.
The presence of population heterogeneity in allele frequencies
and in disease rates are not sufficient to cause bias; as they
concede, major bias from population stratification requires
tracking of allele frequencies with disease rates and failure to
control for ethnicity through tools such as self-report. It follows
that except for HLA and other alleles with wide interethnic
variation and diseases with large ethnic variation in rates, there
is no need for serious concern. Furthermore, when race can be
determined easily or when cancer rates do not vary greatly
among races, the presence of multiple races (as in California)
cannot be a major problem. Allele frequencies and cancer rates
from mixed-race individuals are likely to be intermediate be-
tween those of the races of their ancestors; these lead to less
potential for bias, even if arbitrary racial categorization is used,
than in a population that was a mixture of endogamous groups
(2). Finally, one or more areas of very high or very low disease
rate does not cause major bias unless it represents a large
proportion of the total population and it is characterized by an
extreme allele frequency.
Cryptic Correlation. Thomas and Witte (1) raise the related
issue of so-called cryptic correlation (13), which refers to
homogeneity of risk attributable to shared genetic background
of distantly related individuals. We know that cryptic correla-
tion can lead to inappropriately narrow confidence intervals,
but its quantitative impact depends on the importance of genetic
factors on disease. In fact, unmeasured environmental factors
can affect significance levels in exactly the same way. If em-
pirical studies show that these do have a major impact on
significance tests and confidence intervals, perhaps reduction in
the standard 0.05 critical value is called for. Still, the impact is
likely to be less than Thomas and Witte (1) imply. Even if the
overall type I error rate of 5% were reduced from 1.96 to 2.17
(the critical value for nominal 3% size), the required sample
size accounting for 10,000 multiple comparisons via Bonferroni
correction would increase by only �5% when power is 80%.

Is Population Stratification Responsible for Failures to
Replicate Findings?
Is there convincing evidence that any specific false-positive
finding in the literature is a consequence of population strati-
fication or that population stratification increases the false-
positive rate in the aggregate in any substantial way? Thomas
and Witte (1) discuss this point at length but finally indicate that
they would answer negatively.

We recognize that there is a perception that a large fraction
of initial published reports of allele-disease associations have
positive findings and that many of these positive findings are
eventually refuted. But is the perception grounded in fact and is
population stratification responsible? We should consider three
specific questions:

(a) Is the percentage of published false-positive findings
from cohort and case-control studies based on unrelated con-
trols higher than from similar studies using related controls?

(b) Do population studies of genetic polymorphisms with

unrelated controls have a higher rate of false positives than
studies of other factors or even of linkage studies?

(c) Is population stratification responsible for many of the
“excess” false positives, if there is an excess?

These questions have not been addressed empirically.
Given publication bias and self-censorship, the task might be
impossible. But if the answers to these intriguing questions
are positive, then population stratification indeed is a serious
problem.

There are several plausible alternative explanations for
false-positive reports in studies with unrelated controls:

(a) Many studies, particularly in the early years of study-
ing the effects of genes on cancer, have used poor epidemio-
logical designs and protocols. False-positive reports can be a
consequence of using clinic patients as cases and samples of
convenience such as medical students or laboratory technicians
as controls. Although the failure to consider any differences in
race or ethnicity in these studies might lead some to attribute
the problem to population stratification, we would consider the
studies to violate basic design principles, even if there was
matching on ethnicity. We share the view of Morton and
Collins (14) that it is facile to attribute the failure to replicate a
population study to population stratification rather than poor
design; the solution is better adherence to the principles of
epidemiological studies for control selection (3), not necessar-
ily using related controls.

(b) Undoubtedly, associations between most common al-
leles and specific diseases are null. The magnitudes of the
effects of the truly positive ones investigated in population-
based studies are small, as for NAT2 and bladder cancer (15),
and often the studies are small. Consequently, power is low.
The positive predictive value of positive reports for true causal
relationships increases with power and high prior likelihood of
being true (16); a high proportion of false-positive reports is
inevitable when testing unlikely hypotheses, especially with
low power (17). Furthermore, the power of the replication
studies is often low as well; therefore, some failures to replicate
can be attributed to false negatives in the confirmatory studies.

(c) Studies of complex disease like cancer are intrinsically
more difficult than linkage or other studies of a disease caused
exclusively by a single fully penetrant gene. Case-control stud-
ies of a common polymorphism with low penetrance and low
attributable risk for cancer are intrinsically more susceptible to
false positives than studies of a monogenic disease caused by a
single allele (18). The obstacles inherent in studying complex
diseases cannot be avoided because common, low-penetrance
polymorphisms may account for a substantial number of cases
of disease.

(d) Multiple comparisons; data dredging, for example, by
subgroup analysis and allowing for dominant and recessive modes
of inheritance; and P-value creep, i.e., rejecting when the P-value
is slightly or not-so-slightly above the nominal standard, also
increase the apparent frequency of false positives.

(e) The failure to replicate a finding from a study of an
allele in another population can be a function of different
distributions of an unmeasured environmental exposure that
interacts with the variant to cause cancer.

(f) The very fact that case-control studies are often easy to
replicate in existing cohort or other case-control studies in-
creases the speed at which false positives can be identified and
repudiated, compared with other designs where organizing
a study is time-consuming, such as those requiring multiple
families.
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Has Population Stratification Been Shown to Create
Specific Misleading Results?
Thomas and Witte (1) call several candidate gene associations
“classic” examples of population stratification. None of the
examples provide a convincing argument against the credibility
of results of high-quality epidemiological studies with unre-
lated controls, and none is a demonstration of population strat-
ification misleading the scientific community. The salutary
lesson from the Pima-Indian study (12) is that statistical ad-
justment can reduce or eliminate a large bias even in an extreme
situation, not that population stratification is a ubiquitous con-
cern, as some have concluded. In the other examples, there are
“culprits” at least as likely as population stratification for the
lack of replication. Differences in findings on DRD2 could be
related to control selection, differences in access or availability
of alcohol, presence of other addictive disorders in cases and
controls, or differences in phenotype or case definition, includ-
ing whether it is defined by a strict quantitative threshold on
reported consumption of alcohol alone or more broadly and
inconsistency across ethnicities in who is labeled an alcoholic.
The insulin-dependent diabetes mellitus example is an argu-
ment for a more benign view of the effects of population
stratification that would make unnecessary the wait for positive
findings from insensitive sib-pair studies after positive results
from unrelated controls “across several populations.” Their
final example is a cancer study in African Americans, where we
are more agnostic because of lack of data, difficulties in self-
report of ethnicity, and admixture; however, an alternative
explanation of the discrepant findings might be lack of com-
parability in socioeconomic status and healthiness of lifestyle
between cases who are seen for treatment of prostate cancer and
controls in a screening program at the same hospital. We also
agree with Thomas and Witte’s (1) point that there “remain
some questions surrounding [use of] genomic control” to iden-
tify instances of important population stratification.

Thomas and Witte (1) cite the reports of Terwilliger and
Weiss (19) and of Ioannidis et al. (20) to suggest that failure to
replicate might be a serious problem. We do not agree that these
provide salient evidence about the importance of population strat-
ification. Terwilliger and Weiss (19) find that reported P-values
are consistent with a global null hypothesis of no relationship
between alleles and psychiatric diseases, i.e., that the empirical
evidence does not support the existence of any true associations,
much less an excess of false-positive findings attributable to pop-
ulation stratification. They themselves blame the failure to repli-
cate on “investigators too frequently gambling on and publishing
results in situations when the evidence is not at all compelling.”
Ioannidis’ et al. (20) finding might be, at least in part, a regression
to the mean phenomenon; if the first finding is noted because a test
crosses a threshold, one would expect subsequent findings to be
less likely to cross the threshold.

What Can Be Done to Determine Empirically Whether
Population Stratification Is Likely to Be a Major Source
of Bias?
Thomas and Witte (1) propose additional empirical work, espe-
cially in African Americans and other groups of non-European
origin, to complement our first efforts (2, 21) and resolve the issue
to everyone’s satisfaction. It is important to identify the small (or
null) subset of settings where population stratification cannot be
handled by questionnaire data, standard epidemiological methods,
or perhaps genomic control in studies using unrelated controls. In
the meantime, however, we think that our theoretical demonstra-
tion on the impact of population stratification indicates that the

bias is not very substantial, except in extreme cases, which should
usually be easy to identify. We are wary, therefore, of the call of
Thomas and Witte (1) for a “systematic program of research” if it
will impede the funding and publication of perfectly good study
proposals, including those based on existing cohorts (22) and
studies using unrelated controls. In fact, we support adding to the
agenda research on biases from studies with related controls.

Given the failure of empirical studies to provide strong
evidence of major bias or large numbers of false positives in
studies with unrelated controls, how can we tell whether pop-
ulation stratification is a major problem? We have a specific
proposal for additional empirical work using the same unlinked
markers that Thomas and Witte (1) and others want to use for
genomic control. We would characterize distinct ethnic groups
in cohort and population-based case-control studies by combi-
nations of markers that do not cause disease themselves, are not
in linkage disequilibrium with alleles that do cause disease, and
vary strongly by ethnicity. If population stratification is a se-
rious problem, there will be observable gradients in cancer risk,
i.e., variability in rate ratios, as in Table 1, by genomically
defined ethnicities, sufficient to affect the bias factor, after
adjustment for self-reported ethnicity and known risk factors; if
not, population stratification is of less concern.

What Are Possible Solutions If Population Stratification
Does Indeed Cause Serious Bias?
Replication in Different Populations. What can one do when
and if it turns out that population stratification is a problem?
The first solution is replication. Major bias in the same direc-
tion in populations with substantially different ethnic mixes is
very unlikely because the conditions that allowed major bias are
unlikely to be repeated (2).
Genomic Control. Thomas and Witte (1) discuss the possible
use of genomic control of population stratification. Genomic
control uses markers unrelated to disease to correct the bias (13,
23–25). We believe that these methods can sometimes provide
an inexpensive and easy way to enhance the credibility of
studies with unrelated controls by ruling out even the remote
possibility of bias. Perhaps the genetic approaches will prove
particularly useful when ethnic differences are important and
self-report is very difficult, as for African Americans, from
whom we do not know how to capture information on ethnic
ancestry or their degree of European ancestry via questionnaire.
By contrast, among Hispanic or Asian immigrants to the United
States, it is relatively easy to determine broad geographic origin
(Cuban, Mexican, Puerto Rican, Salvadoran; Chinese, Filipino,
Korean, Japanese, Vietnamese).

We doubt, however, that adjustment for genomically de-
termined ethnicity will often have much effect on estimates of
association, especially in non-Hispanic Europeans. Confound-
ing by interethnic differences in disease risk will not be elim-
inated by a genetic definition of ethnicity if the main sources of
ethnic variation in cancer rates are not genetic. Race or ethnicity
is more than just a function of genes, and the racial and ethnic
differences in disease rates are more likely explained by be-
havioral, cultural, and socioeconomic factors, as one can infer
from migrant studies (4). Therefore, genomic determination of
ethnicity is probably not the most effective way to control for
a determinant of risk that is a function of social, economic,
behavioral, cultural, environmental, and religious characteris-
tics, as well as access to health care.

We believe, instead, that self-reported ethnicity, which is
probably more highly correlated with cultural and behavioral
factors than genome-based ethnicity, may be a better and more
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appropriate tool to reduce confounding in cancer studies in
European Americans, and perhaps other groups, where popu-
lation stratification is a concern. Lin and Kelsey (26) discuss
tools for improving collection of ethnic and racial information
from questionnaires (but not genetic panels); they point out that
no single measure will capture the important sources of varia-
tion in disease rates. However, we do not agree with the
assertion of Thomas and Witte (1) that fine grouping of ethnic
origin is needed, and mixed-ethnicity individuals must be
“treated appropriately,” given the small bias when no ethnic
adjustment is made (Table 1). Furthermore, there could be a
loss from overmatching from a possibly higher correlation
between genetically determined ethnicity and the allele of in-
terest, leading to loss of power.

If indeed differences in cancer rates are to a large extent
manifestations of culturally mediated behavioral differences,
one would expect that self-report of ethnicity would, in prin-
ciple, be accurate, and as Thomas and Witte (1) concede, would
be more useful than genomic control. An ethnic group is un-
likely to maintain its own cultural practices unless its members
are able to distinguish themselves from others. Thus, for ex-
ample, in Lander and Schork’s (18) classic example of associ-
ation between genes for the chop-stick phenotype, standard
epidemiological practice would enable an investigator to dis-
tinguish between San Franciscans of Chinese and European
ancestry and adjust in the analysis.

Thus, in our view, genetic markers of ethnicity are un-
likely to create a better proxy than self-reported ethnicity for
cultural practices that are not known or easy to determine but
strongly affect cancer risk. We fail to see how the best adjust-
ment for ethnicity based on a genetic panel should do a better
job than urban/rural, socioeconomic status, occupation, educa-
tion, and/or self-reported ethnicity. If, on the other hand, there
is some common allele with a substantial relative risk and a
high population attributable risk that explains the differences in
rates, and there is no epidemiological tool that can capture
ethnicity well, a set of markers that discriminates among ethnic
groups might reduce the confounding bias. We accept that
genetic markers may be helpful in studies of unrelated controls,
particularly when the variation in rates is attributable to one or
a few genetic factors or reliable self-report of ethnicity is not
available. We doubt, however, that they are a panacea, espe-
cially if they lead to reduced power and thereby to increased
frequency of false positives.

Is Replication with Related Controls Necessary to
Establish a Causal Relationship?
Rationale for and Difficulties from Use of Related Controls.
Studies with related controls become more valuable if studies
with unrelated controls have serious problems, but they are
hardly a gold standard. Reliance on related controls has serious
practical and efficiency limitations and potentially important
biases in studies of cancer. In a disease of old age, such as many
cancers, siblings, much less parents, are likely to be unavail-
able, especially for those that are mostly or completely confined
to one sex, particularly men. This problem is likely to be worse
for ethnic groups with recent migration to the area where the
study is taking place (27). Availability of a sibling may be
associated with fertility, birth order, other causes of mortality,
socioeconomic and occupational status related to residential
mobility, vital status of the case, or social factors that determine
sibling relationships; one or more of these might be related to
the exposure of interest, with bias as a consequence.

There are also power implications from using related con-

trols. Teng and Risch (28) report that there can be a substantial
increase in power for studying genetic effects from using un-
related controls compared with unaffected siblings. For exam-
ple, when using pooling in a realistic setting (power � 1 � � �
0.8, size � � 5 � 10�8) of simplex families with a dominant
risk model with relative risk of 4 and an allele frequency of
20%, choosing two unrelated controls per case requires 158
cases, whereas the corresponding study with two unaffected
sibs for each case requires 357 cases. For duplex families (2
affected siblings), the corresponding advantage is even greater:
73 versus 247. Thus, choosing unrelated controls can be much
more powerful than choosing siblings for studies of a genetic
effect (28). Furthermore, overmatching on environmental vari-
ables that aggregate in families can reduce the power for
studying environmental exposures. This is a particular problem
when assessing the effect of a behavior during childhood or a
practice begun before adulthood, such as smoking.

In addition, there are some unresolved methodologic and
fieldwork issues that may reduce the usefulness of using sibling
controls in studies designed to study the effects of both genetic
and environmental factors. There can be bias in studying en-
vironmental variables with levels that vary geographically. If
all of the cases in a study are identified from an area with high
levels of environmental pollution, then siblings or other rela-
tives who do not live in the area will tend to have less exposure,
leading to falsely elevated estimates of the main effects and
distorted estimates of interaction. This bias reflects the viola-
tion of the control selection principle that requires controls to be
considered as cases if they would develop disease (3); the
low-exposure siblings who live elsewhere can be controls but
have no chance to become a case. Requiring all controls to be
from the study area solves the bias problem but at a high cost;
cases without siblings in the area would also need to be ex-
cluded.

Some studies, of course, may be improved by including
sibling controls, if they are complementary to or more appro-
priate, overall, than unrelated controls; however, the extra fi-
nancial cost, logistical challenges, and potential bias from using
study designs with parental, sib, and cousin controls in popu-
lations need to be considered for cancer in both young and old
people. Related controls are totally impractical for some studies
of important environmental factors with clinical as well as
etiologic relevance, such as genetic modification of the toxicity
and efficacy of chemotherapeutic drugs. On the other hand,
related controls are useful for studying the interaction between
an environmental factor and a rare allele, as noted by Witte et
al. (27). For example, the Israeli ovarian cancer study (5)
mentioned above examined the effects of parity and use of oral
contraceptives in women who were BRCA1 and BRCA2 carri-
ers. In reflection of the high relative risk for ovarian cancer
from these mutations, 29% of cases but only 1.5% of controls
carried one of the three studied founder mutations. With sibling
controls, there would be many more carrier controls with which
to address the question directly. However, the rationale for
related controls here is power, not protection against population
stratification.

Summary
In earlier work, we argued that bias from population stratifica-
tion is unlikely to be substantial in studies of cancer in non-
Hispanic Europeans (2). Thomas and Witte (1) agree, stating
“We have no fundamental quarrel with these conclusions.” Yet
they suggest that “no candidate gene association should be
considered ‘established’ until confirmed by a [family-based
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case-control study], or at least by multiple well-designed stud-
ies in different populations where any effects of population
stratification or other methodologic biases are unlikely to act in
a consistent manner,” apparently even where they agree that
bias from population stratification is likely to be minimal. We
certainly support the need to replicate epidemiological findings;
we noted previously that in a worst-case scenario where all of
the necessary conditions for population stratification are met in
a single study, “the results will probably not be replicated
because the same conditions are unlikely to exist [in the second
study]” (2). We reject the principle of the use of related controls
as a universal gold standard. They are far from perfect them-
selves, and provide costly insurance only against the bias from
population stratification, which is likely to be small in most
instances.

We find no justification for this argument other than an
appeal to the authority of a Nature Genetics editorial (29) from
which they quote at length. The editorial does state that sub-
missions should have associations “observed in both family
based and population-based studies.” The editorial says, “In
general, we will expect manuscripts reporting genetic associa-
tions to include an estimate of the effect size and to contain
either a replication in an independent sample or physiologically
meaningful data supporting a functional role of the polymor-
phism in question” (29). Overall, the editors seem to be ex-
pressing discomfort in evaluating the quality of epidemiologi-
cal studies rather than a general objection to population-based
studies. A telling point is the final sentence in the editorial:
“Our standards will continue to evolve as knowledge improves
on. . . appropriate strategies for conducting association studies”
(29). If Thomas and Witte want to cite the editorial to support
their call for confirmation with family studies, they need to
argue more strongly that our work (2) and research on genomic
control (13, 23–25) published subsequent to the editorial are not
sufficient to lead to changes in the standard.

Cancer Epidemiology Biomarkers and Prevention is pub-
lishing this point/counterpoint on population stratification pre-
cisely because any differences in practicality, efficiency, and
credibility of studies with related and unrelated controls have
important ramifications for the design and interpretation of
studies on the epidemiology of cancer. If population stratifica-
tion is truly a serious concern in population-based studies and,
therefore, a finding from a family-based study will carry sub-
stantially more weight than a finding of similar magnitude and
similar apparent precision from a study of unrelated controls,
we need to reassess our strategy of using unrelated controls in
cohort (22) and case-control (6) studies whose goals are to
increase understanding of the genetic component, in combina-
tion with environmental factors, of the etiology of complex
diseases such as cancer. If, on the other hand, we are correct,
and major bias from population stratification is unlikely in
well-designed, well-analyzed studies, then funding and publi-
cation decisions about cohort and population-based case-
control studies should be made on the basis of their adherence
to epidemiological design principles and appropriate field-work
practices in the context of specific study goals, instead of on the
basis of concerns over one source of a small bias.

Without population stratification as a consideration, prac-
tical and efficiency considerations dictate the common use of
unrelated controls for most, but certainly not all, studies ad-
dressing the effects of genetic and environmental factors. We
believe that the empirical and theoretical evidence we have
presented provides a strong basis for our contention that con-
clusions from well-designed, well-conducted, and appropriately
analyzed and interpreted population-based studies with unre-

lated controls are robust against bias from population stratifi-
cation. There is a much more compelling rationale for journals
to be wary of low-quality case-control studies than for requiring
related controls. There are discrete settings where studies with
related controls may help to elucidate the role of genetic factors
in the etiology of cancer, but a broad strategy of requiring
replication using related controls, out of fear of population
stratification or high rates of false positives, is not warranted.
Population stratification is not a sufficient reason in itself to
reduce reliance on studies using unrelated controls in studies of
common polymorphisms and cancer. We reject the principle of
the use of related controls as a universal gold standard. They are
far from perfect themselves, and provide costly insurance only
against the bias from population stratification, which is lilely to
be small in most instances.

Acknowledgment
The authors thank Laure el Ghormli for her help with the sample size

calculations.

References
1. Thomas, D. C., and Witte, J. S. Point: Population Stratification: A Problem for
Case-Control Studies of Candidate-Gene Associations? Cancer Epidemiol.
Biomark. Prev., 11: 2002.

2. Wacholder, S., Rothman, N., and Caporaso, N. Population stratification in
epidemiologic studies of common genetic variants and cancer: quantification of
bias. J. Natl. Cancer Inst., 92: 1151–1158, 2000.

3. Wacholder, S., McLaughlin, J. K., Silverman, D. T., and Mandel, J. S.
Selection of controls in case-control studies. I. Principles. Am. J. Epidemiol., 135:
1019–1028, 1992.

4. Thomas, D. B., and Kargas, M. R. Migrant studies. In: D. Schottenfeld and
J. F. Fraumeni (eds.), Cancer Epidemiology and Prevention, pp. 236–254. New
York: Oxford, 1996.

5. Modan, B., Hartge, P., Hirsh-Yechezkel, G., Chetrit, A., Lubin, F., Beller, U.,
Ben Baruch, G., Fishman, A., Menczer, J., Friedman, E., Piura, B., Ebbers, S. M.,
Struewing, J. P., Tucker, M. A., and Wacholder, S. Parity, oral contraceptives, and
the risk of ovarian cancer among carriers and noncarriers of a BRCA1 or BRCA2
mutation. N. Engl. J Med., 345: 235–240, 2001.

6. Caporaso, N., Rothman, N., and Wacholder, S. Case-control studies of com-
mon alleles and environmental factors. J. Natl. Cancer Inst. Monogr., 26: 25–30,
1999.

7. Rothman, N., Wacholder, S., Caporaso, N., Garcia-Closas, M., Buetow, K.,
and Fraumeni, J. F. The use of common genetic polymorphisms to enhance the
epidemiologic study of environmental carcinogens. Biochim. Biophys. Acta,
1471: C1–C10, 2000.

8. Yokoyama, A., Muramatsu, T., Ohmori, T., Kumagai, Y., Higuchi, S., and
Ishii, H. Reliability of a flushing questionnaire and the ethanol patch test in
screening for inactive aldehyde dehydrogenase-2 and alcohol-related cancer risk.
Cancer Epidemiol. Biomark. Prev., 6: 1105–1107, 1997.

9. Begg, C. B. The search for cancer risk factors: when can we stop looking?
Am. J. Public Health, 91: 360–364, 2001.

10. Risch, N. The genetic epidemiology of cancer: interpreting family and twin
studies and their implications for molecular genetic approaches. Cancer Epide-
miol. Biomark. Prev., 10: 733–741, 2001.

11. Risch, N. J. Searching for genetic determinants in the new millennium.
Nature (Lond.), 405: 847–856, 2000.

12. Knowler, W. C., Williams, R. C., Pettitt, D. J., and Steinberg, A. G.
Gm3, 5, 13, 14 and type 2 diabetes mellitus: an association in American Indians
with genetic admixture. Am. J. Hum. Genet., 43: 520–526, 1988.

13. Devlin, B., and Roeder, K. Genomic control for association studies. Biomet-
rics, 55: 997–1004, 1999.

14. Morton, N. E., and Collins, A. Tests and estimates of allelic association in
complex inheritance. Proc. Natl. Acad. Sci. USA, 95: 11389–11393, 1998.

15. Marcus, P. M., Vineis, P., and Rothman, N. NAT2 slow acetylation and
bladder cancer risk: a meta-analysis of 22 case-control studies conducted in the
general population. Pharmacogenetics, 10: 115–122, 2000.

16. Browner, W. S., and Newman, T. B. Are all significant P values created
equal? The analogy between diagnostic tests and clinical research. J. Am. Med.
Assoc., 257: 2459–2463, 1987.

519Cancer Epidemiology, Biomarkers & Prevention



17. Garcia-Closas, M., Wacholder, S., Caporaso, N., and Rothman, N. Inference
issues in cohort and case-control studies of genetic effects and gene-environment
interactions. In: M. J. Khoury, J. Little, and W. Burke (eds.), Human Genome
Epidemiology: Scientific Foundation for Using Genetic Information to Improve
Health and Prevent Disease, 2002.

18. Lander, E. S., and Schork, N. J. Genetic dissection of complex traits. Science
(Wash. DC), 265: 2037–2048, 1994.

19. Terwilliger, J. D., and Weiss, K. M. Linkage disequilibrium mapping of
complex disease: fantasy or reality? Curr. Opin. Biotechnol., 9: 578–594, 1998.

20. Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A., and Contopoulos-Ioannidis,
D. G. Replication validity of genetic association studies. Nat. Genet., 29: 306–
309, 2001.

21. Wacholder, S., Rothman, N., and Caporaso, N. Re: Population stratification
in epidemiologic studies of common genetic variants and cancer: quantification of
bias. Response. J. Natl. Cancer. Inst., 93: 157–158, 2001.

22. Langholz, B., Rothman, N., Wacholder, S., and Thomas, D. C. Cohort studies
for characterizing measured genes. J. Natl. Cancer Inst. Monogr., 26: 39–42,
1999.

23. Pritchard, J. K., and Rosenberg, N. A. Use of unlinked genetic markers to
detect population stratification in association studies. Am. J. Hum. Genet., 65:
220–228, 1999.
24. Reich, D. E., and Goldstein, D. B. Detecting association in a case-control
study while correcting for population stratification. Genet. Epidemiol., 20: 4–16,
2001.
25. Satten, G. A., Flanders, W. D., and Yang, Q. Accounting for unmeasured
population substructure in case-control studies of genetic association using a
novel latent-class model. Am. J. Hum. Genet., 68: 466–477, 2001.
26. Lin, R. S., and Kelsey, J. E. Use of race and ethnicity in epidemiologic
research: concepts, methodological issues, and suggestions for research. Epide-
miol. Rev., 22: 187–202, 2001.
27. Witte, J. S., Gauderman, W. J., and Thomas, D. C. Asymptotic bias and
efficiency in case-control studies of candidate genes and gene-environment in-
teractions: basic family designs. Am. J. Epidemiol., 149: 693–705, 1999.
28. Teng, J., and Risch, N. The relative power of family-based and case-control
designs for linkage disequilibrium studies of complex human diseases. II. Indi-
vidual genotyping. Genome Res., 9: 234–241, 1999.
29. Freely Associating. Nat. Genet., 22: 1–2, 1999.

520 Point/Counterpoint: Bias from Population Stratification


